Characteristics of anoxic phosphorus removal in sequence batch reactor.
نویسندگان
چکیده
The characteristics of anaerobic phosphorus release and anoxic phosphorus uptake were investigated in sequencing batch reactors using denitrifying phosphorus removing bacteria (DPB) sludge. The lab-scale experiments were accomplished under conditions of various nitrite concentrations (5.5, 9.5, and 15 mg/L) and mixed liquor suspended solids (MLSS) (1844, 3231, and 6730 mg/L). The results obtained confirmed that nitrite, MLSS, and pH were key factors, which had a significant impact on anaerobic phosphorus release and anoxic phosphorus uptake in the biological phosphorous removal process. The nitrites were able to successfully act as electron acceptors for phosphorous uptake at a limited concentration between 5.5 and 9.5 mg/L. The denitrification and dephosphorous were inhibited when the nitrite concentration reached 15 mg/L. This observation indicated that the nitrite would not inhibit phosphorus uptake before it exceeded a threshold concentration. It was assumed that an increase of MLSS concentration from 1844 mg/L to 6730 mg/L led to the increase of denitrification and anoxic P-uptake rate. On the contrary, the average P-uptake/N denitrifying reduced from 2.10 to 1.57 mg PO4(3-)-P/mg NO3(-)-N. Therefore, it could be concluded that increasing MLSS of the DEPHANOX system might shorten the reaction time of phosphorus release and anoxic phosphorus uptake. However, excessive MLSS might reduce the specific denitrifying rate. Meanwhile, a rapid pH increase occurred at the beginning of the anoxic conditions as a result of denitrification and anoxic phosphate uptake. Anaerobic P release rate increased with an increase in pH. Moreover, when pH exceeded a relatively high value of 8.0, the dissolved P concentration decreased in the liquid phase, because of chemical precipitation. This observation suggested that pH should be strictly controlled below 8.0 to avoid chemical precipitation if the biological denitrifying phosphorus removal capability is to be studied accurately.
منابع مشابه
Effect of influent nutrient ratios and hydraulic retention time (HRT) on simultaneous phosphorus and nitrogen removal in two-sludge sequencing batch reactor
A laboratory-scale anaerobic-anoxic/nitrification sequencing batch reactor (A2N-SBR) fed with domestic wastewater was operated to examine the effect of varying ratios of influent COD/P, COD/TN and TN/P on the nutrient removal. With the increased COD/P, the phosphorus removals exhibited an upward trend. The influent TN/P ratios had a positive linear correlation with the phosphorus removal effici...
متن کاملEfficiency of SBR Process with a Six Sequence Aerobic-Anaerobic Cycle for Phosphorus and Organic Material Removal from Municipal Wastewater
Background: Various chemical, physical and biologic treatment methods are being used to remove nitrogen and phosphorus from wastewater. Sequencing batch reactor (SBR) is a modified activated sludge process that removes phosphorus and organic material from sanitary wastewater, biologically. Methods: This study was conducted in 2016.The performance of an aerobic-anaerobic SBR pilot device, locat...
متن کاملPerformance evaluation of enhanced SBR in simultaneous removal of nitrogen and phosphorous
BACKGROUND Simultaneous nitrogen, phosphorous and COD removal in a pilot-scale enhanced Sequencing Batch Reactor (eSBR) was investigated. METHODS The reactor consisted of a pre-anoxic zone and internal recycle and was fed with synthetic wastewater. The study was performed by operating the reactor in 6-hour cycles in three different operational modes during a time frame of 279 days. RESULTS ...
متن کاملStudy on Influence of Nitrate on Induction of Denitrifying Phosphate Accumulating Organisms
The enrichment of denitrifying phosphate accumulating organisms (DNPAOs) is the prerequisite for the denitrifying phosphate removal process. This study investigated the effect of nitrate concentration on the enrichment of DNPAOs was studied with batch experiments. The Sequencing Batch Reactor (SBR) was set-up with acetate as the sole carbon source. The addition of nitrate solution and the anoxi...
متن کاملAdvancing post-anoxic denitrification for biological nutrient removal.
The objective of this research was to advance a fundamental understanding of a unique post-anoxic denitrification process for achieving biological nutrient removal (BNR), with an emphasis on elucidating the impacts of surface oxygen transfer (SOT), variable process loadings, and bioreactor operational conditions on nitrogen and phosphorus removal. Two sequencing batch reactors (SBRs) were opera...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of environmental sciences
دوره 19 7 شماره
صفحات -
تاریخ انتشار 2007